Domination Cover Pebbling: Graph Families
نویسندگان
چکیده
Given a configuration of pebbles on the vertices of a connected graph G, a pebbling move is defined as the removal of two pebbles from some vertex, and the placement of one of these on an adjacent vertex. We introduce the notion of domination cover pebbling, obtained by combining graph cover pebbling ([2]) with the theory of domination in graphs ([3]). The domination cover pebbling number, ψ(G), of a graph G is the minimum number of pebbles that must be placed on
منابع مشابه
Domination Cover Pebbling: Structural Results
This paper continues the results of “Domination Cover Pebbling: Graph Families.” An almost sharp bound for the domination cover pebbling (DCP) number, ψ(G), for graphs G with specified diameter has been computed. For graphs of diameter two, a bound for the ratio between λ(G), the cover pebbling number of G, and ψ(G) has been computed. A variant of domination cover pebbling, called subversion DC...
متن کاملCover Pebbling Numbers and Bounds for Certain Families of Graphs
Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ(G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are ...
متن کاملPebbling Numbers and Bounds for Certain Families of Graphs
Given a configuration of pebbles on the vertices of a graph, a pebbling move is defined by removing two pebbles from some vertex and placing one pebble on an adjacent vertex. The cover pebbling number of a graph, γ(G), is the smallest number of pebbles such that through a sequence of pebbling moves, a pebble can eventually be placed on every vertex simultaneously, no matter how the pebbles are ...
متن کاملThe Pi-Pebbling Function
Recent research in graph pebbling has introduced the notion of a cover pebbling number. Along this same idea, we develop a more general pebbling function π P (G). This measures the minimum number of pebbles needed to guarantee that any distribution of them on G can be transformed via pebbling moves to a distribution with pebbles on t target vertices. Furthermore, the P part of the function give...
متن کاملThe Complexity of Pebbling and Cover Pebbling
This paper discusses the complexity of graph pebbling, dealing with both traditional pebbling and the recently introduced game of cover pebbling. Determining whether a configuration is solvable according to either the traditional definition or the cover pebbling definition is shown to be NP -complete. The problem of determining the cover pebbling number for an arbitrary demand configuration is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005